Module 3 Tríangle Congruence

What this module is about

This module is about using triangle congruence to prove congruent segments and angles. You will understand that a correspondence between two triangles is a congruence if the corresponding angle and corresponding sides are congruent.

This module is designed for you to:

- 1. prove congruent segments and angles using the conditions for triangle congruence.
- 2. solve routine and non-routine problems.

How much do you know

Given: HS bisects ∠THE
∠HTS ≅ ∠HES

2. Given: \overline{PM} // \overline{NS} ; \overline{PM} \cong \overline{SN}

Prove: $\overline{ML} \cong \overline{LN}$

3. Given: $\overline{NO} \cong \overline{XS}$; $\overline{OE} \cong \overline{SI}$; $\overline{NI} \cong \overline{XE}$

Prove: $\angle O \cong \angle S$

4. Given: Δ PNC and Δ TNC are isosceles triangles with common base $\overline{\text{NC}}$.

Prove: ∠PNT ≅ ∠PCT

5. Given: \overline{AE} is the \bot bisector of \overline{BC}

Prove: $\angle B \cong \angle C$

6. Given: $\overline{CH} \cong \overline{EH}$, $\overline{FH} \cong \overline{GH}$

Prove: $\angle C \cong \angle E$

7. Given: $\angle A$ and $\angle B$ are right angles and $\overline{AP} \cong \overline{BP}$.

Prove: $\overline{AQ} \cong \overline{BQ}$

8. Given: $\angle 1 \cong \angle 2$

O is the midpoint of \overline{SP}

Prove: $\overline{MO} \cong \overline{NO}$

9. Given: $\overline{LO} \cong \overline{LN}$

 $\Delta\,\text{JLO}$ and $\Delta\,\text{MLN}$ are right $\Delta\,\text{s}$

Prove: $\angle J \cong \angle K$

10. Given: $\overline{PQ} \cong \overline{RS}$

 $\angle QRP \cong \angle SRP$

Prove: $\overline{SP} \cong \overline{QR}$

Lesson

Congruent Segments and Congruent Angles

To prove two segments or two angles are congruent, you must show that they are corresponding parts of congruent triangles.

For triangle congruence, you have the following:

- SSS congruence
- SAS congruence
- ASA congruence
- SAA congruence

For right triangle congruence, you have the following:

- LL congruence
- LA congruence
- HyL congruence
- HyA congruence

Examples:

Formal Proofs:

1. Given: $\overline{AB} /\!/ \overline{DC}$, $\overline{AD} /\!/ \overline{BC}$

Prove: $\overline{AB} \cong \overline{DC}$

Proof:

Statement

- 1. \overline{AB} // \overline{DC} , \overline{AD} // \overline{BC}
- 2. $\angle 1 \cong \angle 2$, $\angle 3 \cong \angle 4$
- 3. $\overline{BD} \cong \overline{BD}$
- 4. $\triangle ABD \cong \triangle CDB$
- 5. $\therefore \overline{AB} \cong \overline{DC}$

Reason

- 1. Given
- 2. If two parallel lines are cut by a transversal, then the alternate interior angles are \cong
- 3. Reflexivity
- 4. ASA
- 5. Corresponding parts of \cong triangles are \cong or CPCTC
- LS bisects ∠TLE 2. Given: \angle LTS \cong \angle LES

Prove: $\overline{TS} \cong \overline{ES}$

Proof:

Statement

- 1. \overline{LS} bisects $\angle TLE$
- 2. <u>∠</u>TLS<u>≅</u> ∠ELS
- 3. $\overline{LS} \cong \overline{LS}$
- 4. \angle LTS \cong \angle LES
- 5. $\Delta TSL \cong \Delta ESL$ 6. $TS \cong ES$

- 1. Given
- 2. Definition of angle bisector
- 3. Reflexivity
- 4. Given
- 5. SAA congruence
- 6. Corresponding parts of $\cong \Delta s$ are \cong or CPCTC

3. Given: $\overline{MO} \cong \overline{YS}$, $\overline{OB} \cong \overline{SP}$, $\overline{MP} \cong \overline{YB}$

Prove: $\angle O \cong \angle S$

Proof:

Statement

1. $\overline{\underline{MO}} \cong \overline{\underline{YS}}$ $\overline{\underline{OB}} \cong \overline{\underline{SP}}$ $\overline{MP} \cong \overline{YB}$

- 2. $\overline{PB} \cong \overline{PB}$
- 3. MB ≅ PY
- 4. $\Delta MOB \cong \Delta YSP$
- 5. ∠O ≅ ∠S

Reason

- 1. Given
- 2. Reflexivity
- 3. By addition
- 4. SSS congruence
- 5. CPCTC
- 4. Given: \overline{AR} is the \bot bisector of \overline{BX} .

Prove: $\angle B \cong \angle X$

Proof:

Statement

- 1. \overline{AR} is the \perp bisector of \overline{BX}
- 2. $\overline{AR} \cong \overline{AR}$
- 3. $\overline{BR} \cong \overline{XR}$
- 4. $\triangle ARB \cong \triangle ARX$
- 5. ∠B ≅ ∠X

5. Given: $\angle 1 \cong \angle 2$

O is the midpoint of SP

Prove: $\overline{DO} \cong \overline{SO}$

Proof:

Statement

- 1. ∠1 ≅ ∠2
- 2. \angle DSO \cong \angle SPO
- 3. O is the midpoint of SP
- 4. $\overline{SO} \cong \overline{PO}$
- 5. $\angle DOS \cong \angle SOP$
- 6. $\Delta SDO \cong \Delta PSO$
- 7. $\overline{DO} \cong \overline{SO}$

an n

Reason

- 1. Given
- 2. Reflexivity
- 3. Definition of \bot bisector
- 4. LL congruence
- 5. CPCTC

- 1. Given
- 2. Supplements of \cong \angle s are also \cong
- 3. Given
- 4. Definition of midpoint
- 5. Vertical \angle s are \cong
- 6. ASA congruence
- 7. CPCTC

Try this out

1. Given: \angle SLO and \angle KMO are right angles LO \cong MO

Prove: $\angle S \cong \angle K$

2. Given: $\overline{XY} \cong \overline{RS}$ $\angle YXR \angle SRX$

Prove: $\overline{SX} \cong \overline{YR}$

3. Given: Δ PNU and Δ TNU are isosceles triangles with common base $\overline{\text{NU}}$

Prove: $\angle PNT \cong \angle PUT$

4. Given: $\overline{CD} \cong \overline{ED}$, $\overline{FC} \cong \overline{FE}$

Prove: $\angle C \cong \angle E$

5. Given: $\angle A \cong \angle C$ are right angles $\overline{AK} \cong \overline{MC}$

Prove: $\overline{MA} \cong \overline{KC}$

6. Given: $\overline{MN} \perp \overline{NR}, \overline{PR} \perp \overline{NR}, \overline{MR} \cong \overline{PN}$

Prove: $\overline{MN} \cong \overline{NR}$

7. Given: $\overline{AI} \cong \overline{BN}, \overline{BI} \cong \overline{AN}$

Prove: $\angle I \cong \angle N$

8. Given: In the figure, \overline{JV} and \overline{NC} bisect each other at O

Prove: $\angle J \cong \angle V$

9. Given: \overline{MQ} and \overline{PN} bisect each other at O

Prove: $\angle P \cong \angle N$

10. Given:
$$\overline{GQ} \cong \overline{RS}$$

 $\angle QGR \cong \angle SRG$

Prove: $\overline{SG} \cong \overline{QR}$

To prove two segments or two angles are congruent, you must show that they are corresponding parts of congruent triangles.

For triangle congruence, you have the following:

- SSS congruence
- SAS congruence
- ASA congruence
- SAA congruence

For right triangle congruence, you have the following:

- LL congruence
- LA congruence
- HyL congruence
- HyA congruence

1. Given: $\overline{\mathsf{TS}}$ bisects $\angle \mathsf{MTE}$ $\angle \mathsf{TMS} \cong \angle \mathsf{TES}$

Prove: $\overline{TM} \cong \overline{TE}$

2. Given: $\overline{PQ} /\!/ \overline{NS}; \overline{PQ} \cong \overline{SN}$

Prove: $\overline{QL} \cong \overline{LN}$

3. Given: $\overline{XO} \cong \overline{YS}$; $\overline{OE} \cong \overline{SI}$; $\overline{XI} \cong \overline{YE}$

Prove: $\angle O \cong \angle S$

4. Given: ΔPNQ and ΔTNQ are isosceles triangles with common base \overline{NQ} .

Prove: $\angle PNQ \cong \angle TNQ$

5. Given: $\overline{\text{HE}}$ is the \perp bisector of $\overline{\text{BC}}$

Prove: $\angle B \cong \angle C$

6. Given: $\overline{CG} \cong \overline{EG}$, $\overline{FG} \cong \overline{HG}$

D Prove: $\angle C \cong \angle E$ F, Н

7. Given: $\angle R$ and $\angle S$ are right angles and $\overline{RP} \cong \overline{SP}$.

Prove: $\overline{RQ} \cong \overline{SQ}$

8. Given: $\angle 1 \cong \angle 2$ O is the midpoint of \overline{SP}

Prove: $\overline{RO} \cong \overline{TO}$

9. Given: \angle JLO and \angle KMO are right \angle s LO and MO

Prove: $\angle J \cong \angle K$

10. Given: $\overline{PQ} \cong \overline{RS}$

 $\angle QPR \cong \angle SRP$

Prove: $\overline{SP} \cong \overline{QR}$

How much do you know

1. Proof

Statement

- 1. $\overline{\mathsf{HS}}$ bisects $\angle \mathsf{THE}$ $\angle \mathsf{HTS} \cong \angle \mathsf{HES}$
- 2. <u>∠</u>THS<u>≅</u> ∠EHS
- 3. HS ≅ HS
- 4. $\Delta THS \cong \Delta EHS$
- 5. $\overline{\mathsf{TS}} \cong \overline{\mathsf{ES}}$

2. Proof:

Statement

- 1. $\overline{PM} // \overline{NS}, \overline{PM} \cong \overline{SN}$
- 2. $\angle P \cong \angle S$, $\angle M \cong \angle N$
- 3. $\triangle PLM \cong \triangle SLN$
- $4. \ \overline{ML} \, \cong \, \overline{LN}$

3. Proof:

Statement

- 1. $\overline{NO} \cong \overline{XS}, \overline{OE} \cong \overline{SI}$ $\overline{NI} \cong \overline{XE}$
- 2. IE ≅ IE
- 3. $\overline{NE} \cong \overline{IX}$
- 4. $\triangle NOE \cong \triangle XSI$
- 5. ∠O ≅ ∠S

4. Proof:

Statement

- 1. \triangle PNC and \triangle TNC are isosceles \triangle
- 2. $\overline{PN} \cong \overline{PC}, \overline{TN} \cong \overline{TC}$
- 3. $\overline{\mathsf{PT}} \cong \overline{\mathsf{PT}}$
- 4. $\triangle PNT \cong \triangle PCT$
- 5. $\angle PNT \cong \angle PCT$

Reason

- 1. Given
- 2. Definition of ∠ bisector
- 3. Reflexivity
- 4. SAA congruence
- 5. CPCTC

Reason

- 1. Given
- 2. If 2 // lines cut by a transversal, the alternate interior \angle s are \cong
- 3. ASA congruence
- 4. CPCTC

Reason

- 1. Given
- 2. Reflexivity
- 3. By addition
- 4. SSS congruence
- 5. CPCTC

- 1. Given
- 2. Definition of isosceles
- 3. Reflexivity
- 4. SSS congruence
- 5. CPCTC

Statement

- 1. \overline{AE} is the \perp bisector of \overline{BC}
- 2. BE ≅ CE
- 3. $\overline{AE} \cong \overline{AE}$
- 4. $\triangle AEB \cong \triangle AEC$
- 5. $\angle B \cong \angle C$

Reason

- Given
 - 3. Definition of \perp bisector
 - 2. Reflexivity
 - 4. LL congruence
 - 5. CPCTC

6. Proof:

Statement

- 1. CH ≅ EH, FH ≅ GH
- 2. \angle FHC \cong \angle GHE
- 3. Δ FHC \cong Δ GHE
- 4. $\angle C \cong \angle E$

Reason

- 1. Given
- 2. Vertical ∠s are ≅
- 3. SAS
- 4. CPCTC

7. Proof:

Statement

- 1. $\angle A$ and $\angle B$ are rt. $\angle s$ 1. Given $\overline{\mathsf{AP}} \cong \overline{\mathsf{BP}}$
- 2. $PQ \cong PQ$
- 3. $\triangle PAQ \cong \triangle PBQ$
- 4. $\overline{AQ} \cong \overline{BQ}$

Reason

- 2. Reflexivity
- 3. HyL congruence
- 4. CPCTC

8. Proof:

Statement

- 1. ∠1 ≅ ∠2
- 2. $\angle MSO \cong \angle NPO$
- 3. O is the midpoint of SP
- 4. $\overline{SO} \cong \overline{PO}$
- 5. $\angle MOS \cong \angle NOP$
- 6. $\Delta MDO \cong \Delta NPO$
- 7. $MO \cong NO$

- 1. Given
- 2. Supplements of \cong \angle s are also \cong
- 3. Given
- 4. Definition of midpoint
- 5. Vertical \angle s are \cong
- 6. ASA congruence
- 7. CPCTC

Statement

- 1. $\overline{\mathsf{LO}}\cong\overline{\mathsf{LN}}$
- 2. $\angle JLO \cong \angle MLN$
- 3. $\Delta JLO \cong \Delta MLN$
- 4. $\angle J \cong \angle K$

Reason

- 1. Given
- 2. Vertical \angle s are \cong
- 3. LA congruence
- 4. CPCTC

10. Proof:

Statement

- 1. $\overline{PQ} \cong \overline{RS}$ $\angle QRP \cong \angle SRP$
- 2. PR ≅ PR
- 3. $\Delta PSR \cong \Delta RQP$
- 4. $\overline{SP} \cong \overline{QR}$

Reason

- 1. Given
- 2. Reflexivity
- 3. SAS congruence
- 4. CPCTC

Try this out

Lesson

1. Proof:

Statement

- 1. $\overline{LO} \cong \overline{MO}$
- 2. \angle SOL \cong \angle KOM
- 3. Δ SLO \cong Δ KMO
- 4. $\angle S \cong \angle K$

Reason

- 1. Given
- 2. Vertical ∠s are ≅
- 3. LA congruence
- 4. CPCTC

2. Proof:

Statement

- 1. $\overline{XY} \cong \overline{RS}$ $\angle YXR \cong \angle SRX$ 2. $\overline{RX} \cong \overline{RX}$
- 3. $\Delta XYR \cong \Delta RSX$
- 4. $SX \cong YR$

- 1. Given
- 2. Reflexivity
- 3. SAS congruence
- 4. CPCTC

Statement

- 1. \triangle PNU and \triangle TNU are isosceles \triangle
- 2. $\overline{PN} \cong \overline{PU}, \overline{TN} \cong \overline{TU}$
- 3. PT ≅ PT
- 4. $\triangle PNT \cong \triangle PUT$
- 5. $\angle PNT \cong \angle PUT$

Reason

- 1. Given
- 2. Definition of isosceles
- 3. Reflexivity
- 4. SSS congruence
- 5. CPCTC

4. Proof:

Statement

- 1. $\overline{CD} \cong \overline{ED}, \overline{FC} \cong \overline{FE}$
- 2. DF \cong DF
- 3. $\triangle DCF \cong \triangle DEF$
- 4. $\angle C \cong \angle E$

Reason

- Given
 - 2. Reflexivity
 - 3. SSS congruence
 - 4. CPCTC

5. Proof:

Statement

- 1. $\angle A \cong \angle C$ $\overline{AK} \cong \overline{MC}$
- 2. $\overline{MK} \cong \overline{MK}$
- 3. $\Delta MCK \cong \Delta KAM$
- 4. MA ≅ KC

Reason

- 1. Given
- 2. Reflexivity
- 3. HyL congruence
- 4. CPCTC

6. Proof:

Statement

- 1. $\overline{MR} \cong \overline{PN}$
- 2. $\overline{NR} \cong \overline{NR}$
- 3. \triangle MNR \cong \triangle PRN
- 4. $\overline{MN} \cong \overline{PR}$

- 1. Given
- 2. Reflexivity
- 3. Hyl congruence
- 4. CPCTC

Statement

- 1. $\overline{\overline{AI}} \cong \overline{\overline{BN}}$ $\overline{\overline{BI}} \cong \overline{\overline{AN}}$
- 2. $\overline{\mathsf{IN}} \cong \overline{\mathsf{IN}}$
- 3. $\triangle AIN \cong \triangle BNI$
- 4. ∠I ≅ ∠N

Reason

- 1. Given
- 2. Reflexivity
- 3. SSS congruence
- 4. CPCTC

8. Proof:

Statement

- JV and NC bisect each other at O
- 2. $\overline{JO} \cong \overline{VO}$ $\overline{CO} \cong \overline{NO}$
- 3. $\angle JOC \cong \angle VON$
- 4. $\Delta JOC \cong \Delta VON$
- 5. ∠J ≅ ∠V

Reason

- 1. Given
- 2. Definition of Segment Bisector
- 3. Vertical \angle s are \cong
- 4. SAS
- 5. CPCTC

9. Proof:

Statement

- 1. MQ and PN bisect each other at O
- 2. $\underline{MO} \cong \underline{QO}$ $\underline{PO} \cong \overline{NO}$
- 3. $\angle POM \cong \angle NOQ$
- 4. $\Delta POM \cong \Delta VOQ$
- 5. $\angle P \cong \angle N$

Reason

- 1. Given
- 2. Definition of Segment Bisector
- 3. Vertical ∠s are ≅
- 4. SAS
- 5. CPCTC

10. Proof:

Statement

- 1. $\overline{GQ} \cong \overline{RS}$ $\angle QGR \cong \angle SRG$
- 2. $RG \cong RG$
- 3. $\triangle QGR \cong \triangle SRG$
- 4. $\overline{SG} \cong \overline{QR}$

- 1. Given
- 2. Reflexivity
- 3. SAS congruence
- 4. CPCTC

What have you learned

1. Proof

Statement

- 1. $\overline{\mathsf{TS}}$ bisects $\angle \mathsf{MHE}$ $\angle \mathsf{TMS} \cong \angle \mathsf{TES}$
- 2. \angle MTS \cong \angle ETS
- 3. $\overline{\mathsf{TS}} \cong \overline{\mathsf{TS}}$
- 4. Δ SMT \cong Δ SET
- 5. $\overline{TM} \cong \overline{TE}$

2. Proof:

Statement

- 1. PQ // SN
- 2. $\angle QPL \cong \angle NSL$ $\angle PQL \cong \angle SNL$
- 3. $\triangle PQL \cong \triangle SNL$
- 4. $\overline{QL} \cong \overline{LN}$

3. Proof:

Statement

- 1. $\overline{XO} \cong \overline{YS}$, $\overline{OE} \cong \overline{SI}$
- 2. ĪE ≅ ĪE
- 3. $\overline{XE} \cong \overline{YI}$
- 4. $\Delta XOE \cong \Delta YSI$
- 5. ∠0 ≅ ∠S

4. Proof:

Statement

- ΔPNQ and ΔTNQ are isosceles Δ
- 2. $\overrightarrow{PN} \cong \overrightarrow{PQ}$, $\overrightarrow{TN} \cong \overrightarrow{TQ}$
- 3. $\overline{\mathsf{PT}} \cong \overline{\mathsf{PT}}$
- 4. $\triangle PNT \cong \triangle PQT$
- 5. $\angle PNQ \cong \angle TNQ$

Reason

- 1. Given
- 2. Definition of ∠ bisector
- 3. Reflexivity
- 4. SAA congruence
- 5. CPCTC

Reason

- 1. Given
- 2. If 2 // lines cut by a transversal, the alternate interior \angle s are \cong
- 3. ASA congruence
- 4. CPCTC

Reason

- 1. Given
 - 2. Reflexivity
 - 3. By addition
 - 4. SSS congruence
 - 5. CPCTC

- 1. Given
- 2. Definition of isosceles
- 3. Reflexivity
- 4. SSS congruence
- 5. CPCTC

Statement

- 1. $\overline{\text{HE}}$ is the \perp bisector of $\overline{\text{BC}}$
- 2. BE ≅ CE
- 3. HE ≅ HE
- 4. $\triangle HEB \cong \triangle HEC$
- 5. $\angle B \cong \angle C$

Reason

- 1. Given
- 3. Definition of \perp bisector
- 2. Reflexivity
- 4. LL congruence
- 5. CPCTC

6. Proof:

Statement

- 1. $CG \cong EG$, $FG \cong HG$
- 2. \angle FGC \cong \angle HGE
- 3. \triangle FGC \cong \triangle HGE
- 4. $\angle C \cong \angle E$

Reason

- 1. Given
- 2. Vertical \angle s are \cong
- 3. SAS
- 4. CPCTC

7. Proof:

Statement

- 1. $\overline{RP} \cong \overline{SP}$
- 2. $\overline{PQ} \cong \overline{PQ}$
- 3. $\triangle PRQ \cong \triangle PSQ$
- 4. $\overline{RQ} \cong \overline{SQ}$

Reason

- 1. Given
- 2. Reflexivity
- 3. HyL congruence4. CPCTC

8. Proof:

Statement

- 1. ∠1 ≅ ∠2
- 2. $\angle RSP \cong \angle TPO$
- 3. O is the midpoint of \overline{SP}
- 4. $\overline{SO} \cong \overline{PO}$
- 5. \angle SOR \cong \angle POT
- 6. \triangle SOR \cong \triangle POT
- 7. RO ≅ TO

- 1. Given
- 2. Supplements of $\cong \angle$ s are also \cong
- 3. Given
- 4. Definition of midpoint
- 5. Vertical ∠s are ≅
- 6. ASA congruence
- 7. CPCTC

Statement

- 1. $\overline{LO} \cong \overline{MO}$
- 2. $\angle LOJ \cong \angle MOK$
- 3. $\Delta LOJ \cong \Delta MOK$
- 4. $\angle J \cong \angle K$

Reason

- 1. Given
- 2. Vertical ∠s are ≅
- 3. LA congruence
- 4. CPCTC

10. Proof:

Statement

- 1. $\overline{PQ} \cong \overline{RS}$ $\angle QPR \cong \angle SRP$ 2. $PR \cong PR$
- 3. $\triangle QPR \cong \triangle SRP$
- 4. $\overline{SP} \cong \overline{QR}$

- 1. Given
- 2. Reflexivity
- 3. SAS congruence
- 4. CPCTC